Determinant structure of R_{l} type discrete integrable system

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
2004 J. Phys. A: Math. Gen. 374557
(http://iopscience.iop.org/0305-4470/37/16/006)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.90
The article was downloaded on 02/06/2010 at 17:55

Please note that terms and conditions apply.

Determinant structure of \boldsymbol{R}_{I} type discrete integrable system

Atsushi Mukaihira and Satoshi Tsujimoto
Department of Applied Mathematics and Physics, Graduate School of Informatics, Kyoto University, Kyoto 606-8501, Japan

Received 19 January 2004, in final form 11 March 2004
Published 5 April 2004
Online at stacks.iop.org/JPhysA/37/4557 (DOI: 10.1088/0305-4470/37/16/006)

Abstract

A determinant structure of the R_{I} type discrete integrable system by VinetZhedanov on a semi-infinite lattice is studied using the bilinear method. Bilinear equations of the R_{I} type discrete integrable system are derived by applying appropriate dependent variable transformations. It is shown that a particular solution for the bilinear equations on a semi-infinite lattice is given in terms of Casorati-type determinants. It is also discussed how the R_{I} type discrete integrable system relates to the discrete relativistic Toda lattice.

PACS numbers: $02.30 . \mathrm{Ik}, 02.30 \mathrm{Gp}, 05.45 . \mathrm{Yv}$

1. Introduction

The relativistic Toda lattice (RTL) is one of the fundamental models in integrable systems [10]. As is well known, the RTL is reduced to the Toda lattice (TL) in some limit of a parameter. A discrete analogue of the relativistic Toda lattice (dRTL) was proposed by Suris [12]. The dRTL is reduced not only to the RTL, but also to a discrete analogue of the TL, the discrete Toda lattice (dTL). Thus the dRTL can be regarded as a generalization of the RTL, the dTL and the TL.

Recently a new discrete integrable system was derived by Vinet-Zhedanov [13] through the study of spectral transformations for the R_{I} rational functions. We call this R_{I} type discrete integrable system the R_{I} chain. The R_{I} rational functions, which were introduced by Ismail-Masson [4] in relation to the multi-point Padé approximation, are a generalization of the Laurent biorthogonal polynomials. It is known that the time evolution of the dRTL describes a spectral transformation for the Laurent biorthogonal polynomials [5]. Then it is expected that the R_{I} chain is a generalization of the dRTL.

The τ function is a fundamental object in the theory of integrable systems, because it reveals the essential features of integrable systems such as Lax representation, Bäcklund transformation, N -soliton solution and so on. By Hirota's bilinear method, integrable systems are transformed to bilinear equations. When the τ functions are expressed as determinants,
the bilinear equations are reduced to some determinant identities $[1-3,8]$. In this paper, we study a determinant structure of the R_{I} chain using the bilinear method.

The aim of this paper is to derive bilinear equations of the R_{I} chain by applying appropriate dependent variable transformations and to clarify a determinant structure of a particular solution for the R_{I} chain on a semi-infinite lattice using the bilinear method. This paper is organized as follows. In section 2 , we review how the R_{I} chain is derived from the R_{I} rational functions. In section 3, we derive bilinear equations of the R_{I} chain and show that a particular solution for the bilinear equations on a semi-infinite lattice is given in terms of Casorati-type determinants. In section 4 , we discuss how the R_{I} chain relates to the dRTL. Section 5 is devoted to concluding remarks.

2. Derivation of the R_{I} chain

Consider polynomials $P_{n}(x)$ generated by the recurrence relation

$$
\begin{equation*}
P_{n+1}(x)+\left(u_{n} x+v_{n}\right) P_{n}(x)+w_{n}\left(x-\alpha_{n}\right) P_{n-1}(x)=0 \quad n=0,1, \ldots \tag{1}
\end{equation*}
$$

with the initial conditions

$$
\begin{equation*}
P_{-1}(x)=0 \quad P_{0}(x)=1 \tag{2}
\end{equation*}
$$

where u_{n}, v_{n} and w_{n} are some constants. The R_{I} rational functions $R_{n}(x)$ are defined as
$R_{n}(x)=\frac{P_{n}(x)}{\prod_{i=1}^{n}\left(x-\alpha_{i}\right)} \quad n=1,2, \ldots \quad R_{-1}(x)=0 \quad R_{0}(x)=1$
under the assumptions

$$
\begin{equation*}
w_{n} \neq 0 \quad P_{n}\left(\alpha_{n}\right) \neq 0 \quad n=1,2, \ldots \tag{4}
\end{equation*}
$$

These functions satisfy the recurrence relation
$\left(x-\alpha_{n+1}\right) R_{n+1}(x)+\left(u_{n} x+v_{n}\right) R_{n}(x)+w_{n} R_{n-1}(x)=0 \quad n=0,1, \ldots$
with the same initial conditions

$$
\begin{equation*}
R_{-1}(x)=0 \quad R_{0}(x)=1 \tag{6}
\end{equation*}
$$

Ismail and Masson established the orthogonality relation for the R_{I} rational functions.
Theorem 1 (Ismail-Masson [4]). There exists a linear functional \mathscr{L} on the space of rational functions $x^{l} / \prod_{i=1}^{k}\left(x-\alpha_{i}\right), k, l=0,1, \ldots$, such that the orthogonality relation

$$
\begin{equation*}
\mathscr{L}\left[R_{n}(x) x^{m}\right]=0 \quad m=0,1, \ldots, n-1 \tag{7}
\end{equation*}
$$

holds.
A transformation for the R_{I} rational functions is given by

$$
\begin{equation*}
\tilde{R}_{n}(x)=\frac{A_{n}\left(x-\alpha_{n+1}\right) R_{n+1}(x)+B_{n} R_{n}(x)}{x-\lambda} \tag{8}
\end{equation*}
$$

where A_{n} and B_{n} are some constants satisfying the relation

$$
\begin{equation*}
A_{n} R_{n+1}(\lambda)=B_{n} R_{n}(\lambda) \tag{9}
\end{equation*}
$$

It is easily shown that the new rational functions $\tilde{R}_{n}(x)$ are again the R_{I} rational functions satisfying the orthogonality relation

$$
\begin{equation*}
\tilde{\mathscr{L}}\left[\tilde{R}_{n}(x) x^{m}\right]=0 \quad m=0,1, \ldots, n-1 \tag{10}
\end{equation*}
$$

where

$$
\begin{equation*}
\tilde{\mathscr{L}}=(x-\lambda) \mathscr{L} . \tag{11}
\end{equation*}
$$

The transformation (8) is called the Christoffel transformation. There also exists the reciprocal transformation to the Christoffel transformation

$$
\begin{equation*}
R_{n}(x)=\tilde{R}_{n}(x)+C_{n} \tilde{R}_{n-1}(x) \tag{12}
\end{equation*}
$$

where C_{n} is some constant. This transformation (12) is called the Geronimus transformation. These transformations (8) and (12) can be regarded as spectral transformations for the R_{I} rational functions [13].

The spectral transformations (8) and (12) for the R_{I} rational functions induce a discrete integrable system which the coefficients A_{n}, B_{n} and C_{n} satisfy. To see this, we introduce a discrete time t as the number of times that the Christoffel transformations are applied to the initial R_{I} rational functions $R_{n}^{0}(x)=R_{n}(x)$. Then the spectral transformations are written as follows:

$$
\begin{align*}
& R_{n}^{t+1}(x)=\frac{A_{n}^{t}\left(x-\alpha_{n+1}\right) R_{n+1}^{t}(x)+B_{n}^{t} R_{n}^{t}(x)}{x-\lambda_{t}} \tag{13a}\\
& R_{n}^{t}(x)=R_{n}^{t+1}(x)+C_{n}^{t} R_{n-1}^{t+1}(x) \tag{13b}
\end{align*}
$$

From the compatibility condition of the spectral transformations (13) we derive a discrete integrable system, the R_{I} chain,

$$
\begin{align*}
& \frac{A_{n-1}^{t+1} C_{n}^{t+1}-1}{A_{n}^{t+1}}=\frac{A_{n}^{t} C_{n+1}^{t}-1}{A_{n}^{t}} \tag{14a}\\
& \frac{\alpha_{n} A_{n-1}^{t+1} C_{n}^{t+1}-B_{n}^{t+1}-\lambda_{t+1}}{A_{n}^{t+1}}=\frac{\alpha_{n+1} A_{n}^{t} C_{n+1}^{t}-B_{n}^{t}-\lambda_{t}}{A_{n}^{t}} \tag{14b}\\
& \frac{B_{n-1}^{t+1} C_{n}^{t+1}}{A_{n}^{t+1}}=\frac{B_{n}^{t} C_{n}^{t}}{A_{n}^{t}} . \tag{14c}
\end{align*}
$$

We note that the R_{I} chain (14) is essentially the same as the discrete integrable system derived in [13].

3. Determinant solution on the semi-infinite lattice

Applying the dependent variable transformations

$$
\begin{align*}
A_{n}^{k, t} & =-\frac{\tau_{n}^{k+1, t+1} \tau_{n+1}^{k, t}}{\tau_{n}^{k, t+1} \tau_{n+1}^{k+1, t}} \tag{15a}\\
B_{n}^{k, t} & =\frac{\tau_{n}^{k, t} \tau_{n+1}^{k+1, t+1}}{\tau_{n}^{k, t+1} \tau_{n+1}^{k+1, t}} \tag{15b}\\
C_{n}^{k, t} & =\frac{\tau_{n-1}^{k, t+1} \tau_{n+1}^{k, t}}{\tau_{n}^{k, t}} \tau_{n}^{k, t+1} \tag{15c}
\end{align*}
$$

the R_{I} chain (14) is transformed to the bilinear equations

$$
\begin{equation*}
\tau_{n}^{k, t} \tau_{n}^{k+1, t+1}-\tau_{n}^{k, t+1} \tau_{n}^{k+1, t}=\tau_{n-1}^{k+1, t+1} \tau_{n+1}^{k, t} \tag{16a}
\end{equation*}
$$

$$
\begin{align*}
& \tau_{n}^{k, t} \tau_{n+1}^{k, t+1}+\left(\lambda_{t}-\alpha_{k+n}\right) \tau_{n}^{k, t+1} \tau_{n+1}^{k, t}=\tau_{n}^{k+1, t+1} \tau_{n+1}^{k-1, t} \tag{16b}\\
& \tau_{n}^{k-1, t} \tau_{n}^{k+1, t}+\tau_{n-1}^{k, t} \tau_{n+1}^{k, t}=\tau_{n}^{k, t} \sigma_{n}^{k, t} \tag{16c}\\
& \tau_{n}^{k+1, t} \sigma_{n+1}^{k, t}-\tau_{n+1}^{k, t} \sigma_{n}^{k+1, t}=\left(\alpha_{k+n+1}-\alpha_{k+n}\right) \tau_{n}^{k, t} \tau_{n+1}^{k+1, t} \tag{16d}
\end{align*}
$$

where the index k denotes an auxiliary independent variable. It can be shown that if $\tau_{n}^{k, t}$ and $\sigma_{n}^{k, t}$ satisfy the bilinear equations (16), then $A_{n}^{k, t}, B_{n}^{k, t}$ and $C_{n}^{k, t}$ satisfy the R_{I} chain (14).

We give a solution for the R_{I} chain on a semi-infinite lattice.
Theorem 2. Define the τ functions $\tau_{n}^{k, t}$ and $\sigma_{n}^{k, t}$ as

$$
\begin{align*}
\tau_{n}^{k, t} & =\left|\begin{array}{cccc}
c_{k, 0}^{t} & c_{k, 1}^{t} & \cdots & c_{k, n-1}^{t} \\
c_{k+1,0}^{t} & c_{k+1,1}^{t} & \cdots & c_{k+1, n-1}^{t} \\
\vdots & \vdots & & \vdots \\
c_{k+n-1,0}^{t} & c_{k+n-1,1}^{t} & \cdots & c_{k+n-1, n-1}^{t}
\end{array}\right| \tag{17a}\\
\sigma_{n}^{k, t} & =\left|\begin{array}{cccc}
c_{k+n, n}^{t}-\alpha_{k+n-1} c_{k+n, n-1}^{t} & c_{k+n-2, n-1}^{t} & \cdots & c_{k+n-2,2 n-3}^{t} \\
c_{k+n, n-1}-\alpha_{k+n-1} c_{k+n, n-2}^{t} & c_{k+n-2, n-2}^{t} & \cdots & c_{k+n-2,2 n-4}^{t} \\
\vdots & \vdots & & \vdots \\
c_{k+n, 1}^{t}-\alpha_{k+n-1} c_{k+n, 0}^{t} & c_{k+n-2,0}^{t} & \cdots & c_{k+n-2, n-2}^{t}
\end{array}\right| \tag{17b}
\end{align*}
$$

where the element $c_{k, l}^{t}$ satisfies the dispersion relations

$$
\begin{align*}
& c_{k-1, l}^{t}=c_{k, l+1}^{t}-\alpha_{k} c_{k, l}^{t} \tag{18a}\\
& c_{k, l}^{t+1}=c_{k, l+1}^{t}-\lambda_{t} c_{k, l}^{t} \tag{18b}
\end{align*}
$$

Then the τ functions (17) give a solution for the bilinear equations of the R_{I} chain (16) on the semi-infinite lattice
$\tau_{-1}^{k, t}=\tau_{-2}^{k, t}=\cdots=0 \quad \sigma_{-1}^{k, t}=\sigma_{-2}^{k, t}=\cdots=0 \quad \tau_{0}^{k, t}=\sigma_{0}^{k, t}=1$.
In terms of the variables $A_{n}^{k, t}, B_{n}^{k, t}$ and $C_{n}^{k, t}$, the corresponding boundary condition is given by
$A_{-1}^{k, t}=A_{-2}^{k, t}=\cdots=0 \quad B_{-1}^{k, t}=B_{-2}^{k, t}=\cdots=0 \quad C_{0}^{k, t}=C_{-1}^{k, t}=\cdots=0$.
Proof. We show that the τ functions (17) satisfy the bilinear equations (16).
Let D be some determinant, and $D\left[\begin{array}{cccc}i_{1} & i_{2} & \ldots & i_{n} \\ j_{1} & j_{2} & \ldots & j_{n}\end{array}\right]$ be the determinant with the i_{1}, \ldots, i_{n} th rows and the j_{1}, \ldots, j_{n} th columns removed from D. Then the following identity is satisfied,

$$
D \cdot D\left[\begin{array}{ll}
i & k \tag{21}\\
j & l
\end{array}\right]=D\left[\begin{array}{l}
i \\
j
\end{array}\right] D\left[\begin{array}{c}
k \\
l
\end{array}\right]-D\left[\begin{array}{l}
i \\
l
\end{array}\right] D\left[\begin{array}{l}
k \\
j
\end{array}\right]
$$

which is called the Jacobi identity. The bilinear equation (16a) follows from the Jacobi identity (21) with $i=j=1, k=l=n+1$, where D is given by

$$
D=\left|\begin{array}{ccccc}
c_{k, 0}^{t} & c_{k, 0}^{t+1} & \cdots & c_{k, n-2}^{t+1} & c_{k, n-1}^{t+1} \tag{22}\\
c_{k+1,0}^{t} & c_{k+1,0}^{t+1} & \cdots & c_{k+1, n-2}^{t+1} & c_{k+1, n-1}^{t+1} \\
\vdots & \vdots & & \vdots & \vdots \\
c_{k+n-1,0}^{t} & c_{k+n-1,0}^{t+1} & \cdots & c_{k+1}^{t+1} & c_{1, n-2}^{t+1} \\
c_{k+n-1, n-1}^{t} \\
c_{k+n, 0}^{t+1} & c_{k+n, 0}^{t+1} & \cdots & c_{k+n, n-2}^{t+1} & c_{k+n, n-1}^{t+1}
\end{array}\right|
$$

Indeed, we can easily see that

$$
\begin{align*}
& D=\tau_{n+1}^{k, t} \tag{23a}\\
& D\left[\begin{array}{ll}
1 & n+1 \\
1 & n+1
\end{array}\right]=\tau_{n-1}^{k+1, t+1} \tag{23b}\\
& D\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\tau_{n}^{k+1, t+1} \tag{23c}\\
& D\left[\begin{array}{l}
n+1 \\
n+1
\end{array}\right]=\tau_{n}^{k, t} \tag{23d}\\
& D\left[\begin{array}{c}
1 \\
n+1
\end{array}\right]=\tau_{n}^{k+1, t} \tag{23e}\\
& D\left[\begin{array}{c}
n+1 \\
1
\end{array}\right]=\tau_{n}^{k, t+1} . \tag{23f}
\end{align*}
$$

Similarly, we obtain the bilinear equation (16c) from the Jacobi identity (21) with $i=j=1$, $k=l=n+1$ and
$D=\left|\begin{array}{ccccc}c_{k+n, n}^{t}-\alpha_{k+n-1} c_{k+n, n-1}^{t} & c_{k+n-2, n-1}^{t} & \cdots & c_{k+n-2,2 n-3}^{t} & c_{k+n-2,2 n-2}^{t} \\ c_{k+n, n-1}-\alpha_{k+n-1} c_{k+n, n-2}^{t} & c_{k+n-2, n-2}^{t} & \cdots & c_{k+n-2,2 n-4}^{t} & c_{k+n-2,2 n-3}^{t} \\ \vdots & \vdots & & \vdots & \vdots \\ c_{k+n, 1}^{t}-\alpha_{k+n-1} c_{k+n, 0}^{t} & c_{k+n-2,0}^{t} & \cdots & c_{k+n-2, n-2}^{t} & c_{k+n-2, n-1}^{t} \\ c_{k+n, 0}^{t} & c_{k+n-1,0}^{t} & \cdots & c_{k+n-1, n-2}^{t} & c_{k+n-1, n-1}^{t}\end{array}\right|$.
We have now proved that the τ functions (17) satisfy the bilinear equations (16a), (16c).
Next, we move on to the proofs that the bilinear equations (16b), (16d) are satisfied by the τ functions (17). Consider the identity

$$
\left|\begin{array}{ccc|c|ccc|cc}
f_{1} & \cdots & f_{n} & a_{1} & & \emptyset & & a_{2} & a_{3} \tag{25}\\
\hline & \emptyset & & a_{1} & f_{1} & \cdots & f_{n-1} & a_{2} & a_{3}
\end{array}\right|=0
$$

where f_{i}, a_{i} are arbitrary $(n+1)$-dimensional column vectors. Applying the Laplace expansion to the left-hand side of identity (25), we obtain

$$
\begin{align*}
& \left\lvert\, \begin{array}{lllll}
f_{1} & \cdots & f_{n-1} & f_{n} & \left.a_{1}|\cdot| \begin{array}{lllll}
f_{1} & \cdots & f_{n-1} & a_{2} & a_{3}
\end{array} \right\rvert\,
\end{array}\right. \\
& -\left|\begin{array}{lllll}
f_{1} & \cdots & f_{n-1} & f_{n} & a_{2}
\end{array}\right| \cdot\left|\begin{array}{lllll}
f_{1} & \cdots & f_{n-1} & a_{1} & a_{3}
\end{array}\right| \tag{26}\\
& +\left|f_{1} \quad \cdots \quad f_{n-1} \quad f_{n} \quad a_{3}\right| \cdot\left|f_{1} \quad \cdots \quad f_{n-1} \quad a_{1} \quad a_{2}\right|=0
\end{align*}
$$

which is one of the Plücker relations. The bilinear equation (16b) follows from the Plücker relation (26) with

$$
\begin{align*}
& f_{i}=\left(\begin{array}{lll}
c_{k+n-1, n+i-1}^{t+1} & \cdots & c_{k+n-1, i-1}^{t+1}
\end{array}\right)^{\top} \tag{27a}\\
& a_{1}=\left(\begin{array}{llll}
c_{k+n, n}^{t+1} & \cdots & c_{k+n, 0}^{t+1}
\end{array}\right)^{\top} \tag{27b}\\
& a_{2}=\left(\begin{array}{llll}
c_{k+n-1, n}^{t} & \cdots & c_{k+n-1,0}^{t}
\end{array}\right)^{\top} \tag{27c}\\
& a_{3}=\left(\begin{array}{llll}
1 & 0 & \cdots & 0
\end{array}\right)^{\top} . \tag{27d}
\end{align*}
$$

Indeed, we can see that

$$
\begin{align*}
& \left.\begin{array}{lllll}
\mid f_{1} & \cdots & f_{n-1} & f_{n} & a_{1}
\end{array} \right\rvert\,=(-1)^{n} \tau_{n+1}^{k, t+1} \tag{28a}\\
& \left|\begin{array}{lllll}
f_{1} & \cdots & f_{n-1} & a_{2} & a_{3}
\end{array}\right|=-\tau_{n}^{k, t} \tag{28b}\\
& \left.\begin{array}{|lllll}
\mid f_{1} & \cdots & f_{n-1} & f_{n} & a_{2}
\end{array} \right\rvert\,=(-1)^{n} \tau_{n+1}^{k-1, t} \tag{28c}\\
& \left|\begin{array}{lllll}
f_{1} & \cdots & f_{n-1} & a_{1} & a_{3}
\end{array}\right|=-\tau_{n}^{k+1, t+1} \tag{28d}\\
& \left|\begin{array}{lllll}
f_{1} & \cdots & f_{n-1} & f_{n} & a_{3}
\end{array}\right|=(-1)^{n} \tau_{n}^{k, t+1} \tag{28e}\\
& \left.\begin{array}{lllll}
\mid f_{1} & \cdots & f_{n-1} & a_{1} & a_{2}
\end{array} \right\rvert\,=-\left(\lambda_{t}-\alpha_{k+n}\right) \tau_{n+1}^{k, t} . \tag{28f}
\end{align*}
$$

Similarly, the bilinear equation (16d) is reduced to the Plücker relation (26) with

$$
\begin{align*}
& f_{i}=\left(\begin{array}{llll}
c_{k+n-1, n+i-1}^{t+1} & \cdots & c_{k+n-1, i-1}^{t+1}
\end{array}\right)^{\top} \tag{29a}\\
& a_{1}=\left(\begin{array}{lll}
c_{k+n, n}^{t} & \cdots & c_{k+n, 0}^{t}
\end{array}\right)^{\top} \tag{29b}\\
& a_{2}=\left(\begin{array}{llll}
c_{k+n+1, n+1}^{t}-\alpha_{k+n} c_{k+n+1, n}^{t} & \cdots & c_{k+n+1,1}^{t}-\alpha_{k+n} c_{k+n+1,0}^{t}
\end{array}\right)^{\top} \tag{29c}\\
& a_{3}=\left(\begin{array}{llll}
1 & 0 & \cdots & 0
\end{array}\right)^{\top} . \tag{29d}
\end{align*}
$$

This completes the proof.

4. Reduction to the discrete relativistic Toda lattice

As was stated in section 2 , the R_{I} chain is derived from the compatibility condition of the spectral transformations for the R_{I} rational functions. The R_{I} rational functions are reduced to the Laurent biorthogonal polynomials in the case where all the poles of the R_{I} rational functions are equal to some constant: $\alpha_{k}=\alpha$ for all k. Indeed, we obtain the recurrence relation of the Laurent biorthogonal polynomials by shifting the argument x to $x+\alpha$ in the recurrence relation of the R_{I} rational functions (5). It is known that the spectral transformations for the Laurent biorthogonal polynomials induce the dRTL [5]. In this section, we discuss how the R_{I} chain relates to the dRTL.

The dRTL proposed by Suris [12] is given by

$$
\begin{equation*}
\frac{\delta \exp \left(q_{n}^{t+1}-q_{n}^{t}\right)-1}{\delta \exp \left(q_{n}^{t}-q_{n}^{t-1}\right)-1}=\frac{1+g^{2} \exp \left(q_{n-1}^{t}-q_{n}^{t}\right)}{1+g^{2} \exp \left(q_{n}^{t}-q_{n+1}^{t}\right)} \frac{1+\left(g^{2} / \delta\right) \exp \left(q_{n}^{t}-q_{n+1}^{t+1}\right)}{1+\left(g^{2} / \delta\right) \exp \left(q_{n+1}^{t-1}-q_{n}^{t}\right)} \tag{30}
\end{equation*}
$$

where $\delta=\exp (c h), c$ is the speed of light, h is a difference interval, and g is a coupling constant. This system includes several integrable systems as special cases [6, 12]. For example, taking the continuous limit $h \rightarrow 0$ with $g^{2} c^{2}=1$, we obtain from the dRTL (30) the RTL [10]

$$
\begin{align*}
\frac{\mathrm{d}^{2} q_{n}(t)}{\mathrm{d} t^{2}}=(c & \left.+\frac{\mathrm{d} q_{n}(t)}{\mathrm{d} t}\right)\left(c+\frac{\mathrm{d} q_{n+1}(t)}{\mathrm{d} t}\right) \frac{g^{2} \exp \left(q_{n+1}(t)-q_{n}(t)\right)}{1+g^{2} \exp \left(q_{n+1}(t)-q_{n}(t)\right)} \\
& -\left(c+\frac{\mathrm{d} q_{n-1}(t)}{\mathrm{d} t}\right)\left(c+\frac{\mathrm{d} q_{n}(t)}{\mathrm{d} t}\right) \frac{g^{2} \exp \left(q_{n}(t)-q_{n-1}(t)\right)}{1+g^{2} \exp \left(q_{n}(t)-q_{n-1}(t)\right)} \tag{31}
\end{align*}
$$

which is reduced to the TL

$$
\begin{equation*}
\frac{\mathrm{d}^{2} q_{n}(t)}{\mathrm{d} t^{2}}=\exp \left(q_{n+1}(t)-q_{n}(t)\right)-\exp \left(q_{n}(t)-q_{n-1}(t)\right) \tag{32}
\end{equation*}
$$

in the limit of $c \rightarrow \infty$. Taking the limit $c \rightarrow \infty$ with $g^{2} / h^{2}=1$, we also obtain the dTL

$$
\begin{equation*}
\exp \left(q_{n}^{t+1}-2 q_{n}^{t}+q_{n}^{t-1}\right)=\frac{1+g^{2} \exp \left(q_{n+1}^{t}-q_{n}^{t}\right)}{1+g^{2} \exp \left(q_{n}^{t}-q_{n-1}^{t}\right)} \tag{33}
\end{equation*}
$$

which is reduced to the TL (32) in the continuous limit of $h \rightarrow 0$.
In the case where all the α_{k} are equal to some constant, the R_{I} chain is reduced to the dRTL. In the subsequent discussion, we show this in terms of the bilinear equations. The dRTL (30) is transformed to the bilinear equations

$$
\begin{align*}
& \tau_{n}^{k-1, t} \tau_{n}^{k+1, t}+\xi \tau_{n-1}^{k, t} \tau_{n+1}^{k, t}=\left(\tau_{n}^{k, t}\right)^{2} \tag{34a}\\
& \xi \tau_{n}^{k, t} \tau_{n+1}^{k, t+1}+\xi \eta(\lambda-\alpha) \tau_{n}^{k, t+1} \tau_{n+1}^{k, t}=\eta \tau_{n}^{k+1, t+1} \tau_{n+1}^{k-1, t} \tag{34b}\\
& \tau_{n}^{k, t} \tau_{n}^{k, t+1}+\xi \eta(\lambda-\alpha) \tau_{n-1}^{k, t+1} \tau_{n+1}^{k, t}=\tau_{n}^{k-1, t} \tau_{n}^{k+1, t+1} \tag{34c}
\end{align*}
$$

through the variable transformations

$$
\begin{align*}
& \exp q_{n}^{t}=\frac{\tau_{n}^{k, t}}{\tau_{n-1}^{k, t}} \tag{35a}\\
& g^{2}=-\xi \tag{35b}\\
& \delta=-\frac{1}{\eta(\lambda-\alpha)} \tag{35c}
\end{align*}
$$

These bilinear equations and their particular solutions are discussed in [6, 7]. See also [9] for bilinear equations of the RTL (31) and their particular solutions.

We introduce multiplier factors to the dispersion relations of the τ functions of the R_{I} chain (18) as

$$
\begin{align*}
& c_{k-1, l}^{t}=\xi_{k}\left(c_{k, l+1}^{t}-\alpha_{k} c_{k, l}^{t}\right) \tag{36a}\\
& c_{k, l}^{t+1}=\eta_{t}\left(c_{k, l+1}^{t}-\lambda_{t} c_{k, l}^{t}\right) \tag{36b}
\end{align*}
$$

Thus the bilinear equations of the R_{I} chain (16) are modified as follows:
$\tau_{n}^{k, t} \tau_{n}^{k+1, t+1}-\tau_{n}^{k, t+1} \tau_{n}^{k+1, t}=\eta_{t} \tau_{n-1}^{k+1, t+1} \tau_{n+1}^{k, t}$
$\xi_{k} \tau_{n}^{k, t} \tau_{n+1}^{k, t+1}+\xi_{k} \eta_{t}\left(\lambda_{t}-\alpha_{k+n}\right) \tau_{n}^{k, t+1} \tau_{n+1}^{k, t}=\eta_{t} \tau_{n}^{k+1, t+1} \tau_{n+1}^{k-1, t}$
$\tau_{n}^{k-1, t} \tau_{n}^{k+1, t}+\xi_{k} \tau_{n-1}^{k, t} \tau_{n+1}^{k, t}=\xi_{k} \xi_{k+1}\left(\xi_{k+2}\right)^{2} \cdots\left(\xi_{k+n-2}\right)^{n-2} \tau_{n}^{k, t} \sigma_{n}^{k, t}$
$\tau_{n}^{k+1, t} \sigma_{n+1}^{k, t}-\xi_{k+1} \cdots \xi_{k+n-1} \tau_{n+1}^{k, t} \sigma_{n}^{k+1, t}=\frac{\alpha_{k+n+1}-\alpha_{k+n}}{\xi_{k+1}\left(\xi_{k+2}\right)^{2} \cdots\left(\xi_{k+n-1}\right)^{n-1}} \tau_{n}^{k, t} \tau_{n+1}^{k+1, t}$.
Here setting $\alpha_{k}=\alpha$ for all k, the four bilinear equations (37) are reduced to the three bilinear equations

$$
\begin{align*}
& \tau_{n}^{k, t} \tau_{n}^{k+1, t+1}-\tau_{n}^{k, t+1} \tau_{n}^{k+1, t}=\eta_{t} \tau_{n-1}^{k+1, t+1} \tau_{n+1}^{k, t} \tag{38a}\\
& \xi_{k} \tau_{n}^{k, t} \tau_{n+1}^{k, t+1}+\xi_{k} \eta_{t}\left(\lambda_{t}-\alpha\right) \tau_{n}^{k, t+1} \tau_{n+1}^{k, t}=\eta_{t} \tau_{n}^{k+1, t+1} \tau_{n+1}^{k-1, t} \tag{38b}\\
& \xi_{k+n} \tau_{n}^{k-1, t} \tau_{n}^{k+1, t}+\xi_{k} \xi_{k+n} \tau_{n-1}^{k, t} \tau_{n+1}^{k, t}=\xi_{k}\left(\tau_{n}^{k, t}\right)^{2} . \tag{38c}
\end{align*}
$$

These bilinear equations (38) with $\lambda_{t}=\lambda, \xi_{k}=\xi, \eta_{t}=\eta$ for all k and t are equivalent to the bilinear equations of the discrete relativistic Toda lattice (34). Equations (38b) and (38c) go to equations (34a) and (34b) respectively. Multiplying both sides of equation (38a) by $\tau_{n-1}^{k, t+1}$ and using equation ($38 c$), we obtain

$$
\begin{equation*}
\xi_{k} \tau_{n}^{k, t} \tau_{n}^{k, t+1}+\xi_{k} \xi_{k+1} \eta_{t}\left(\lambda_{t}-\alpha\right) \tau_{n-1}^{k, t+1} \tau_{n+1}^{k, t}=\xi_{k+1} \tau_{n}^{k-1, t} \tau_{n}^{k+1, t+1} \tag{39}
\end{equation*}
$$

which goes to equation (34c).

5. Concluding remarks

In this paper, we have derived bilinear equations of the R_{I} chain and shown that a particular solution for the R_{I} chain on a semi-infinite lattice is given in terms of Casorati-type determinants. We have also discussed how the R_{I} chain relates to the dRTL. As a result, we have obtained the following hierarchical diagram:

In comparison with the dTL, a special feature of the R_{I} chain is that it has two arbitrary parameters, the time-dependent parameter λ_{t} and the space-dependent parameter α_{n}. The dTL has only a time-dependent parameter. Of the two parameters, λ_{t} denotes a nonuniform difference interval of the discrete time t, which is the same situation as in the case of the dTL. On the other hand, the space-dependent parameter α_{n} does not have such a interpretation in the original form of the R_{I} chain. In order to derive bilinear equations of the R_{I} chain, we have introduced the auxiliary independent variable k to the R_{I} chain and generalized it. The space-dependent parameter α_{n} can now be regarded as a nonuniform difference interval of k.

We have considered a solution for the R_{I} chain on a semi-infinite lattice in this paper. It is also an important problem to derive solutions on other lattices such as an infinite lattice or a periodic lattice.

As we mentioned in section 2 , the R_{I} chain was derived through the study of the R_{I} rational functions. There exists a more general class including the R_{I} rational functions, which is called the $R_{I I}$ rational functions [4]. Spiridonov-Zhedanov [11] derived a discrete integrable system called the $R_{I I}$ chain from a compatibility condition of spectral transformations for the $R_{I I}$ chain. The $R_{I I}$ chain has three arbitrary parameters, one more arbitrary parameter than the R_{I} chain. It is an interesting problem to study the $R_{I I}$ chain using the bilinear method.

Acknowledgments

The authors are grateful to Y Nakamura and A Zhedanov for many fruitful discussions and helpful advice. This paper is supported in part by Grant-in-Aid for Scientific Research (no 15005102,15540119) from the Ministry of Education, Culture, Sports, Science and Technology, Japan.

References

[^0][3] Hirota R 1987 Discrete two-dimensional Toda molecule equation J. Phys. Soc. Japan 56 4285-8
[4] Ismail M E H and Masson D R 1995 Generalized orthogonality and continued fractions J. Approx. Theory 83 1-40
[5] Kharchev S, Mironov A and Zhedanov A 1997 Faces of relativistic Toda chain Int. J. Mod. Phys. A 12 2675-724
[6] Maruno K, Kajiwara K and Oikawa M 1998 Casorati determinant solution for the discrete-time relativistic Toda lattice equation Phys. Lett. A 241 335-43
[7] Minesaki Y and Nakamura Y 2001 The discrete relativistic Toda molecule equation and a Padé approximation algorithm Numer. Algorithms 27 219-35
[8] Ohta Y, Hirota R, Tsujimoto S and Imai T 1993 Casorati and discrete Gram type determinant representations of solutions to the discrete KP hierarchy J. Phys. Soc. Japan 62 1872-86
[9] Ohta Y, Kajiwara K, Matsukidaira J and Satsuma J 1993 Casorati determinant solution for the relativistic Toda lattice equation J. Math. Phys. 34 5190-204
[10] Ruijsenaars S N M 1990 Relativistic Toda systems Commun. Math. Phys. 133 217-47
[11] Spiridonov V and Zhedanov A 2000 Spectral transformation chains and some new biorthogonal rational functions Commun. Math. Phys. 210 49-83
[12] Suris Yu B 1996 A discrete-time relativistic Toda lattice J. Phys. A: Math. Gen. 29 451-65
[13] Vinet L and Zhedanov A 1998 An integrable chain and bi-orthogonal polynomials Lett. Math. Phys. 46 233-45

[^0]: [1] Freeman F C and Nimmo J J C 1983 Soliton solutions of the Korteweg-de Vries and Kadomtsev-Petviashvili equations: the Wronskian technique Phys. Lett. A 95 1-3
 [2] Hirota R 1977 Nonlinear partial difference equations: II. Discrete-time Toda equation J. Phys. Soc. Japan 43 2074-8

