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Abstract
A determinant structure of the RI type discrete integrable system by Vinet–
Zhedanov on a semi-infinite lattice is studied using the bilinear method.
Bilinear equations of the RI type discrete integrable system are derived by
applying appropriate dependent variable transformations. It is shown that a
particular solution for the bilinear equations on a semi-infinite lattice is given
in terms of Casorati-type determinants. It is also discussed how the RI type
discrete integrable system relates to the discrete relativistic Toda lattice.

PACS numbers: 02.30.Ik, 02.30.Gp, 05.45.Yv

1. Introduction

The relativistic Toda lattice (RTL) is one of the fundamental models in integrable systems [10].
As is well known, the RTL is reduced to the Toda lattice (TL) in some limit of a parameter.
A discrete analogue of the relativistic Toda lattice (dRTL) was proposed by Suris [12]. The
dRTL is reduced not only to the RTL, but also to a discrete analogue of the TL, the discrete
Toda lattice (dTL). Thus the dRTL can be regarded as a generalization of the RTL, the dTL
and the TL.

Recently a new discrete integrable system was derived by Vinet–Zhedanov [13] through
the study of spectral transformations for the RI rational functions. We call this RI type
discrete integrable system the RI chain. The RI rational functions, which were introduced
by Ismail–Masson [4] in relation to the multi-point Padé approximation, are a generalization
of the Laurent biorthogonal polynomials. It is known that the time evolution of the dRTL
describes a spectral transformation for the Laurent biorthogonal polynomials [5]. Then it is
expected that the RI chain is a generalization of the dRTL.

The τ function is a fundamental object in the theory of integrable systems, because
it reveals the essential features of integrable systems such as Lax representation, Bäcklund
transformation, N-soliton solution and so on. By Hirota’s bilinear method, integrable systems
are transformed to bilinear equations. When the τ functions are expressed as determinants,
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the bilinear equations are reduced to some determinant identities [1–3, 8]. In this paper, we
study a determinant structure of the RI chain using the bilinear method.

The aim of this paper is to derive bilinear equations of the RI chain by applying appropriate
dependent variable transformations and to clarify a determinant structure of a particular
solution for the RI chain on a semi-infinite lattice using the bilinear method. This paper
is organized as follows. In section 2, we review how the RI chain is derived from the RI

rational functions. In section 3, we derive bilinear equations of the RI chain and show that
a particular solution for the bilinear equations on a semi-infinite lattice is given in terms of
Casorati-type determinants. In section 4, we discuss how the RI chain relates to the dRTL.
Section 5 is devoted to concluding remarks.

2. Derivation of the RI chain

Consider polynomials Pn(x) generated by the recurrence relation

Pn+1(x) + (unx + vn)Pn(x) + wn(x − αn)Pn−1(x) = 0 n = 0, 1, . . . (1)

with the initial conditions

P−1(x) = 0 P0(x) = 1 (2)

where un, vn and wn are some constants. The RI rational functions Rn(x) are defined as

Rn(x) = Pn(x)∏n
i=1(x − αi)

n = 1, 2, . . . R−1(x) = 0 R0(x) = 1 (3)

under the assumptions

wn �= 0 Pn(αn) �= 0 n = 1, 2, . . . . (4)

These functions satisfy the recurrence relation

(x − αn+1)Rn+1(x) + (unx + vn)Rn(x) + wnRn−1(x) = 0 n = 0, 1, . . . (5)

with the same initial conditions

R−1(x) = 0 R0(x) = 1. (6)

Ismail and Masson established the orthogonality relation for the RI rational functions.

Theorem 1 (Ismail–Masson [4]). There exists a linear functional L on the space of rational
functions xl

/∏k
i=1(x − αi), k, l = 0, 1, . . . , such that the orthogonality relation

L [Rn(x)xm] = 0 m = 0, 1, . . . , n − 1 (7)

holds.

A transformation for the RI rational functions is given by

R̃n(x) = An(x − αn+1)Rn+1(x) + BnRn(x)

x − λ
(8)

where An and Bn are some constants satisfying the relation

AnRn+1(λ) = BnRn(λ). (9)

It is easily shown that the new rational functions R̃n(x) are again the RI rational functions
satisfying the orthogonality relation

L̃ [R̃n(x)xm] = 0 m = 0, 1, . . . , n − 1 (10)
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where

L̃ = (x − λ)L . (11)

The transformation (8) is called the Christoffel transformation. There also exists the reciprocal
transformation to the Christoffel transformation

Rn(x) = R̃n(x) + CnR̃n−1(x) (12)

where Cn is some constant. This transformation (12) is called the Geronimus transformation.
These transformations (8) and (12) can be regarded as spectral transformations for the RI

rational functions [13].
The spectral transformations (8) and (12) for the RI rational functions induce a discrete

integrable system which the coefficients An,Bn and Cn satisfy. To see this, we introduce a
discrete time t as the number of times that the Christoffel transformations are applied to the
initial RI rational functions R0

n(x) = Rn(x). Then the spectral transformations are written as
follows:

Rt+1
n (x) = At

n(x − αn+1)R
t
n+1(x) + Bt

nR
t
n(x)

x − λt

(13a)

Rt
n(x) = Rt+1

n (x) + Ct
nR

t+1
n−1(x). (13b)

From the compatibility condition of the spectral transformations (13) we derive a discrete
integrable system, the RI chain,

At+1
n−1C

t+1
n − 1

At+1
n

= At
nC

t
n+1 − 1

At
n

(14a)

αnA
t+1
n−1C

t+1
n − Bt+1

n − λt+1

At+1
n

= αn+1A
t
nC

t
n+1 − Bt

n − λt

At
n

(14b)

Bt+1
n−1C

t+1
n

At+1
n

= Bt
nC

t
n

At
n

. (14c)

We note that the RI chain (14) is essentially the same as the discrete integrable system derived
in [13].

3. Determinant solution on the semi-infinite lattice

Applying the dependent variable transformations

Ak,t
n = −τ k+1,t+1

n τ
k,t
n+1

τ
k,t+1
n τ

k+1,t
n+1

(15a)

Bk,t
n = τ k,t

n τ
k+1,t+1
n+1

τ
k,t+1
n τ

k+1,t
n+1

(15b)

Ck,t
n = τ

k,t+1
n−1 τ

k,t
n+1

τ
k,t
n τ

k,t+1
n

(15c)

the RI chain (14) is transformed to the bilinear equations

τ k,t
n τ k+1,t+1

n − τ k,t+1
n τ k+1,t

n = τ
k+1,t+1
n−1 τ

k,t
n+1 (16a)
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τ k,t
n τ

k,t+1
n+1 + (λt − αk+n)τ

k,t+1
n τ

k,t
n+1 = τ k+1,t+1

n τ
k−1,t
n+1 (16b)

τ k−1,t
n τ k+1,t

n + τ
k,t
n−1τ

k,t
n+1 = τ k,t

n σ k,t
n (16c)

τ k+1,t
n σ

k,t
n+1 − τ

k,t
n+1σ

k+1,t
n = (αk+n+1 − αk+n)τ

k,t
n τ

k+1,t
n+1 (16d )

where the index k denotes an auxiliary independent variable. It can be shown that if τ k,t
n and

σ k,t
n satisfy the bilinear equations (16), then Ak,t

n , Bk,t
n and Ck,t

n satisfy the RI chain (14).
We give a solution for the RI chain on a semi-infinite lattice.

Theorem 2. Define the τ functions τ k,t
n and σ k,t

n as

τ k,t
n =

∣∣∣∣∣∣∣∣∣

ct
k,0 ct

k,1 · · · ct
k,n−1

ct
k+1,0 ct

k+1,1 · · · ct
k+1,n−1

...
...

...

ct
k+n−1,0 ct

k+n−1,1 · · · ct
k+n−1,n−1

∣∣∣∣∣∣∣∣∣
(17a)

σ k,t
n =

∣∣∣∣∣∣∣∣∣

ct
k+n,n − αk+n−1c

t
k+n,n−1 ct

k+n−2,n−1 · · · ct
k+n−2,2n−3

ck+n,n−1 − αk+n−1c
t
k+n,n−2 ct

k+n−2,n−2 · · · ct
k+n−2,2n−4

...
...

...

ct
k+n,1 − αk+n−1c

t
k+n,0 ct

k+n−2,0 · · · ct
k+n−2,n−2

∣∣∣∣∣∣∣∣∣
(17b)

where the element ct
k,l satisfies the dispersion relations

ct
k−1,l = ct

k,l+1 − αkc
t
k,l (18a)

ct+1
k,l = ct

k,l+1 − λtc
t
k,l . (18b)

Then the τ functions (17) give a solution for the bilinear equations of the RI chain (16) on the
semi-infinite lattice

τ
k,t
−1 = τ

k,t
−2 = · · · = 0 σ

k,t
−1 = σ

k,t
−2 = · · · = 0 τ

k,t
0 = σ

k,t
0 = 1. (19)

In terms of the variables Ak,t
n , Bk,t

n and Ck,t
n , the corresponding boundary condition is given by

A
k,t
−1 = A

k,t
−2 = · · · = 0 B

k,t
−1 = B

k,t
−2 = · · · = 0 C

k,t
0 = C

k,t
−1 = · · · = 0. (20)

Proof. We show that the τ functions (17) satisfy the bilinear equations (16).

Let D be some determinant, and D
[
i1 i2 ... in

j1 j2 ... jn

]
be the determinant with the i1, . . . , inth

rows and the j1, . . . , jnth columns removed from D. Then the following identity is satisfied,

D · D

[
i k

j l

]
= D

[
i

j

]
D

[
k

l

]
− D

[
i

l

]
D

[
k

j

]
(21)

which is called the Jacobi identity. The bilinear equation (16a) follows from the Jacobi identity
(21) with i = j = 1, k = l = n + 1, where D is given by

D =

∣∣∣∣∣∣∣∣∣∣∣∣

ct
k,0 ct+1

k,0 · · · ct+1
k,n−2 ct+1

k,n−1

ct
k+1,0 ct+1

k+1,0 · · · ct+1
k+1,n−2 ct+1

k+1,n−1
...

...
...

...

ct
k+n−1,0 ct+1

k+n−1,0 · · · ct+1
k+n−1,n−2 ct+1

k+n−1,n−1

ct
k+n,0 ct+1

k+n,0 · · · ct+1
k+n,n−2 ct+1

k+n,n−1

∣∣∣∣∣∣∣∣∣∣∣∣
. (22)
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Indeed, we can easily see that

D = τ
k,t
n+1 (23a)

D

[
1 n + 1
1 n + 1

]
= τ

k+1,t+1
n−1 (23b)

D

[
1
1

]
= τ k+1,t+1

n (23c)

D

[
n + 1
n + 1

]
= τ k,t

n (23d )

D

[
1

n + 1

]
= τ k+1,t

n (23e)

D

[
n + 1

1

]
= τ k,t+1

n . (23 f )

Similarly, we obtain the bilinear equation (16c) from the Jacobi identity (21) with i = j = 1,

k = l = n + 1 and

D =

∣∣∣∣∣∣∣∣∣∣∣∣

ct
k+n,n − αk+n−1c

t
k+n,n−1 ct

k+n−2,n−1 · · · ct
k+n−2,2n−3 ct

k+n−2,2n−2

ck+n,n−1 − αk+n−1c
t
k+n,n−2 ct

k+n−2,n−2 · · · ct
k+n−2,2n−4 ct

k+n−2,2n−3
...

...
...

...

ct
k+n,1 − αk+n−1c

t
k+n,0 ct

k+n−2,0 · · · ct
k+n−2,n−2 ct

k+n−2,n−1

ct
k+n,0 ct

k+n−1,0 · · · ct
k+n−1,n−2 ct

k+n−1,n−1

∣∣∣∣∣∣∣∣∣∣∣∣
. (24)

We have now proved that the τ functions (17) satisfy the bilinear equations (16a), (16c).
Next, we move on to the proofs that the bilinear equations (16b), (16d ) are satisfied by

the τ functions (17). Consider the identity∣∣∣∣f1 · · · fn a1 ∅ a2 a3

∅ a1 f1 · · · fn−1 a2 a3

∣∣∣∣ = 0 (25)

where fi, ai are arbitrary (n + 1)-dimensional column vectors. Applying the Laplace expansion
to the left-hand side of identity (25), we obtain

|f1 · · · fn−1 fn a1| · |f1 · · · fn−1 a2 a3|
−|f1 · · · fn−1 fn a2| · |f1 · · · fn−1 a1 a3|
+|f1 · · · fn−1 fn a3| · |f1 · · · fn−1 a1 a2| = 0

(26)

which is one of the Plücker relations. The bilinear equation (16b) follows from the Plücker
relation (26) with

fi = (
ct+1
k+n−1,n+i−1 · · · ct+1

k+n−1,i−1

)�
(27a)

a1 = (
ct+1
k+n,n · · · ct+1

k+n,0

)�
(27b)

a2 = (
ct
k+n−1,n · · · ct

k+n−1,0

)�
(27c)

a3 = (
1 0 · · · 0

)�
. (27d )
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Indeed, we can see that

|f1 · · · fn−1 fn a1| = (−1)nτ
k,t+1
n+1 (28a)

|f1 · · · fn−1 a2 a3| = −τ k,t
n (28b)

|f1 · · · fn−1 fn a2| = (−1)nτ
k−1,t
n+1 (28c)

|f1 · · · fn−1 a1 a3| = −τ k+1,t+1
n (28d )

|f1 · · · fn−1 fn a3| = (−1)nτ k,t+1
n (28e)

|f1 · · · fn−1 a1 a2| = −(λt − αk+n)τ
k,t
n+1. (28 f )

Similarly, the bilinear equation (16d ) is reduced to the Plücker relation (26) with

fi = (
ct+1
k+n−1,n+i−1 · · · ct+1

k+n−1,i−1

)�
(29a)

a1 = (
ct
k+n,n · · · ct

k+n,0

)�
(29b)

a2 = (
ct
k+n+1,n+1 − αk+nc

t
k+n+1,n · · · ct

k+n+1,1 − αk+nc
t
k+n+1,0

)�
(29c)

a3 = (1 0 · · · 0)�. (29d )

This completes the proof. �

4. Reduction to the discrete relativistic Toda lattice

As was stated in section 2, the RI chain is derived from the compatibility condition of the
spectral transformations for the RI rational functions. The RI rational functions are reduced
to the Laurent biorthogonal polynomials in the case where all the poles of the RI rational
functions are equal to some constant: αk = α for all k. Indeed, we obtain the recurrence
relation of the Laurent biorthogonal polynomials by shifting the argument x to x + α in the
recurrence relation of the RI rational functions (5). It is known that the spectral transformations
for the Laurent biorthogonal polynomials induce the dRTL [5]. In this section, we discuss
how the RI chain relates to the dRTL.

The dRTL proposed by Suris [12] is given by

δ exp
(
qt+1

n − qt
n

) − 1

δ exp
(
qt

n − qt−1
n

) − 1
= 1 + g2 exp

(
qt

n−1 − qt
n

)
1 + g2 exp

(
qt

n − qt
n+1

) 1 + (g2/δ) exp
(
qt

n − qt+1
n+1

)
1 + (g2/δ) exp

(
qt−1

n+1 − qt
n

) (30)

where δ = exp(ch), c is the speed of light, h is a difference interval, and g is a coupling
constant. This system includes several integrable systems as special cases [6, 12]. For
example, taking the continuous limit h → 0 with g2c2 = 1, we obtain from the dRTL (30) the
RTL [10]

d2qn(t)

dt2
=

(
c +

dqn(t)

dt

)(
c +

dqn+1(t)

dt

)
g2 exp(qn+1(t) − qn(t))

1 + g2 exp(qn+1(t) − qn(t))

−
(

c +
dqn−1(t)

dt

) (
c +

dqn(t)

dt

)
g2 exp(qn(t) − qn−1(t))

1 + g2 exp(qn(t) − qn−1(t))
(31)

which is reduced to the TL

d2qn(t)

dt2
= exp(qn+1(t) − qn(t)) − exp(qn(t) − qn−1(t)) (32)
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in the limit of c → ∞. Taking the limit c → ∞ with g2/h2 = 1, we also obtain the dTL

exp
(
qt+1

n − 2qt
n + qt−1

n

) = 1 + g2 exp
(
qt

n+1 − qt
n

)
1 + g2 exp

(
qt

n − qt
n−1

) (33)

which is reduced to the TL (32) in the continuous limit of h → 0.
In the case where all the αk are equal to some constant, the RI chain is reduced to the

dRTL. In the subsequent discussion, we show this in terms of the bilinear equations. The
dRTL (30) is transformed to the bilinear equations

τ k−1,t
n τ k+1,t

n + ξτ
k,t
n−1τ

k,t
n+1 = (

τ k,t
n

)2
(34a)

ξτ k,t
n τ

k,t+1
n+1 + ξη(λ − α)τ k,t+1

n τ
k,t
n+1 = ητk+1,t+1

n τ
k−1,t
n+1 (34b)

τ k,t
n τ k,t+1

n + ξη(λ − α)τ
k,t+1
n−1 τ

k,t
n+1 = τ k−1,t

n τ k+1,t+1
n (34c)

through the variable transformations

exp qt
n = τ k,t

n

τ
k,t
n−1

(35a)

g2 = −ξ (35b)

δ = − 1

η(λ − α)
. (35c)

These bilinear equations and their particular solutions are discussed in [6, 7]. See also [9] for
bilinear equations of the RTL (31) and their particular solutions.

We introduce multiplier factors to the dispersion relations of the τ functions of the RI

chain (18) as

ct
k−1,l = ξk

(
ct
k,l+1 − αkc

t
k,l

)
(36a)

ct+1
k,l = ηt

(
ct
k,l+1 − λtc

t
k,l

)
. (36b)

Thus the bilinear equations of the RI chain (16) are modified as follows:

τ k,t
n τ k+1,t+1

n − τ k,t+1
n τ k+1,t

n = ηtτ
k+1,t+1
n−1 τ

k,t
n+1 (37a)

ξkτ
k,t
n τ

k,t+1
n+1 + ξkηt (λt − αk+n)τ

k,t+1
n τ

k,t
n+1 = ηtτ

k+1,t+1
n τ

k−1,t
n+1 (37b)

τ k−1,t
n τ k+1,t

n + ξkτ
k,t
n−1τ

k,t
n+1 = ξkξk+1(ξk+2)

2 · · · (ξk+n−2)
n−2τ k,t

n σ k,t
n (37c)

τ k+1,t
n σ

k,t
n+1 − ξk+1 · · · ξk+n−1τ

k,t
n+1σ

k+1,t
n = αk+n+1 − αk+n

ξk+1(ξk+2)2 · · · (ξk+n−1)n−1
τ k,t
n τ

k+1,t
n+1 . (37d )

Here setting αk = α for all k, the four bilinear equations (37) are reduced to the three bilinear
equations

τ k,t
n τ k+1,t+1

n − τ k,t+1
n τ k+1,t

n = ηtτ
k+1,t+1
n−1 τ

k,t
n+1 (38a)

ξkτ
k,t
n τ

k,t+1
n+1 + ξkηt (λt − α)τ k,t+1

n τ
k,t
n+1 = ηtτ

k+1,t+1
n τ

k−1,t
n+1 (38b)

ξk+nτ
k−1,t
n τ k+1,t

n + ξkξk+nτ
k,t
n−1τ

k,t
n+1 = ξk

(
τ k,t
n

)2
. (38c)
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These bilinear equations (38) with λt = λ, ξk = ξ, ηt = η for all k and t are equivalent to the
bilinear equations of the discrete relativistic Toda lattice (34). Equations (38b) and (38c) go
to equations (34a) and (34b) respectively. Multiplying both sides of equation (38a) by τ

k,t+1
n−1

and using equation (38c), we obtain

ξkτ
k,t
n τ k,t+1

n + ξkξk+1ηt (λt − α)τ
k,t+1
n−1 τ

k,t
n+1 = ξk+1τ

k−1,t
n τ k+1,t+1

n (39)

which goes to equation (34c).

5. Concluding remarks

In this paper, we have derived bilinear equations of the RI chain and shown that a particular
solution for the RI chain on a semi-infinite lattice is given in terms of Casorati-type
determinants. We have also discussed how the RI chain relates to the dRTL. As a result,
we have obtained the following hierarchical diagram:

RI chain −→ dRTL −→ dTL

| |↓ ↓
RTL −→ TL

In comparison with the dTL, a special feature of the RI chain is that it has two arbitrary
parameters, the time-dependent parameter λt and the space-dependent parameter αn. The
dTL has only a time-dependent parameter. Of the two parameters, λt denotes a nonuniform
difference interval of the discrete time t, which is the same situation as in the case of the dTL.
On the other hand, the space-dependent parameter αn does not have such a interpretation in
the original form of the RI chain. In order to derive bilinear equations of the RI chain, we
have introduced the auxiliary independent variable k to the RI chain and generalized it. The
space-dependent parameter αn can now be regarded as a nonuniform difference interval of k.

We have considered a solution for the RI chain on a semi-infinite lattice in this paper. It
is also an important problem to derive solutions on other lattices such as an infinite lattice or
a periodic lattice.

As we mentioned in section 2, the RI chain was derived through the study of the RI rational
functions. There exists a more general class including the RI rational functions, which is called
the RII rational functions [4]. Spiridonov–Zhedanov [11] derived a discrete integrable system
called the RII chain from a compatibility condition of spectral transformations for the RII

chain. The RII chain has three arbitrary parameters, one more arbitrary parameter than the
RI chain. It is an interesting problem to study the RII chain using the bilinear method.
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